MERCHANT MARINE ACADEMY OF MACEDONIA SCHOOL OF ENGINEERS

Course: Maritime English
Academic year: 2017 – 2018
Exam period: February 2018
Semester: E' (Retakes-old students)

Name:
Student number:
Date:

Instructor: A. Birbili Exam paper grade:

FINAL EXAM

1. Fill in the gaps using the words below. (15 p.)

Azipods propeller	governor	oil confe	ormity addition	thrust	straight	
regulations bearin	ngs load	properties	manoeuvrabilit	y unburnt	speed	
As the	is use	ed to lubrica	te the engine, its _		deteriorate	
over a period of time	due to the _		of impurities	s which cou	ld include	
fi						
Once the	of	the engine h	as been set, the ro	ole of the		
is to maintain that sp	eed despite tl	ne variations	in	·		
	are used to support the shafting in a line between					
the main engine and	the	•				
A marine diesel er			d in	with t	he various	
international rules ar	nd	as v	vell as the advice	of the manu	ıfacturer.	
valuable to the vesse	l since these	systems can	turn 360 degrees	and	can	
be directed at any dir	rection.		_			

2. Choose the correct alternative of the words in italics. (15 p.)

It is a bit difficult to read the early signs of a crankcase explosion. This is because the indications are *similar / different* to many other emergency situations. But there are few pre-explosion signs that can be read. Crankcase explosion will lead to:

- Sudden increase in the *inlet / exhaust* temperature
- Sudden *increase* / *decrease* in the load of the engine
- Regular / irregular running of the engine
- Incongruous noise of the engine
- Smell of the white mist.

In case of these indications, engine *load / speed* should be brought down immediately and the supply of fuel and air should be stopped. The system should then be allowed to cool down by *opening / closing* the indicator cocks and turning on the internal cooling system.

Crankcase explosions can be prevented by avoiding the generation of hot spots. They can also be prevented in the following ways:

- By providing proper lubrication to the reciprocating parts, thus avoiding high *temperatures / pressures*.
- By avoiding overloading of the engine
- By using bearings with *black / white* metal material which prevents rise in temperature.
- By using oil mist detector in the crankcase with proper *vision / visual* and audible alarm. Oil mist detectors raise an alarm if the *concentration / condensation* of oil mist rises above the permissible limit.
- Pressure *regulating / relief* valves should be fixed on the crankcase for the instant release of pressure. They should be periodically *temperature / pressure* tested.
- Crankcase doors should be made of strong and durable material. Vent *pipes / ports* shouldn't be too large and should be checked for any choke up.
- In the event of an explosion, the crankcase doors should never be opened until the system has totally *calmed / cooled* down.
- Fire extinguishing medium should be kept standby. In many systems, *exhaust / inert* gas flooding system is directly connected to the crankcase.

3. Fill in the gaps using the words below. (15 p.)

cavitati	ion	drain	runnii	ng detect	or flam	es princi	iple	vent	solution
blade	expl	osion	fresh	crankcase	relief	warning	pre	ssure	
In fre	eezing	weath	er, you r	nust carefu	lly		_ all p	assage	es and pockets in
the eng	ine th	at conta	ain		water	and are sub	ject to	freezi	ing, unless an
antifree	eze			has been a	dded to the	e water.			
			_ is the f	formation a	nd burstin	g of vapou	r bubb	oles in	water near a
moving	g prop	eller		in	regions o	f low press	ure du	ie to B	ernoulli's
The o	oil mis	 st		does	not reduc	e or preven	t the f	ormati	on of mist, but it
only gi	ves			_ in case th	ne concent	ration rises	abov	e the le	evel at which an
		car	take pla	ace.					
Whe	n engi	nes are	stopped	l, you must		a	ll star	ting-ai	r lines because
serious	accid	ents ma	ay occur	if		is left on.			
Press	sure _			valves sl	nould be p	rovided wi	th wir	e mesh	n to prevent the
release	of			_ inside the	engine ro	om.			
Oil n	nist is	created	d in the _		wł	nen the lubi	ricatin	g oil is	s splashed by the
			compone	ents of the e	engine.				
					_				
4.	Com	plete th	<u>ie sente</u> i	nces with t	he approj	oriate forn	n of th	<u>ie wor</u>	ds in parentheses.
(20 p.)									
The i	main s	shaft is	supporte	ed and held	in		_ (alig	gn) by	bearings.
									e) takes place.
									bunkering.
				·					
				e) free of w					
								mit) of	f ships' fuels.
									hecked on a regular
basis.			`	•					C

The screw-type propeller is the	(propel) device used in almost all
ships.	
	pellers, the pitch can be adjusted by a hydraulic
mechanism which allows the blades to turn	
	g) of the shaft, there can be two or more shafts
coupled by bolting (arra	
	disperse) to break up the oil spill in the Gulf of
Mexico some years ago.	(accessed a) accedition a such as lubrication of
The lubricating off used in	(corrode) conditions such as lubrication of
cylinder liners is mixed with certain	
Cavitation can waste power, generate	
(vibrate) and wear, and	
(regular) running of t	
(indicate) of the governor's	
conductors.	(resist) to electric current are carled
conductors.	
5 Motch the words to their synanym	os/definitions. There is one extra word. (15
	s/definitions. There is one extra word. (15
p.)	
condense dependable attempt mome	ntum stationary defect build up
choke disperse ductwork impact a	lurable chock range rupture limited
standing still; not moving	
clog	
accumulate	
fault	
able to last, long-lasting	
effort	
vary between limits	
cause to break or burst	
(of a gas) become liquid, esp by becoming of	cooler
restricted	
the quantity of movement in a body	
the total of all pipes or tubes	
reliable	
scatter or spread in different directions	
having a powerful influence on sth/smb	
6. Write the opposites of the following	<u>ag words.</u> (5 p.)
ingress	equality
efficient	obey
manned	balance
reasonable	formation
equal	reduce
1	

7. Read the following article and answer the questions that follow. (15 p.)

Some engine surfaces onboard a vessel can heat up to more than 600 degrees Celsius. That is, if you don't protect them. With the right equipment, however, the engine room is a safe place to work.

The sailor's profession used to be a hazardous one. Thousands of wrecks scattered all around the seabed of our oceans testify that in the old days, sailors who ventured out to sea did not always return. Luckily today seafarers can go to work and rely on returning home. But that doesn't mean you can overlook safety issues. These days, a fire in the engine room is the most serious safety risk.

"What if there is a fire in the engine room?' is a question that pops into the mind of anyone who ever gets to work down there," says Jyrki Salo.

Salo worked as a marine engineer for over seven years. These days he's stationed on land in Wärtsilä Services' Turku office in Finland, where he's the Product Manager for large bore and 4-stroke solutions.

Every second counts.

Things get hot in an engine room: some parts can have temperatures exceeding 600 degrees Celsius. These parts must be properly covered.

The SOLAS (Safety of Life at Sea) convention, ratified by the IMO, aims to keep merchant ships safe. The treaty has several chapters, but in short it limits how hot the surfaces of certain engine components are allowed to be, in order to cut the risk of fire. It also defines what kind of spray or splash protection should be used near flammable liquid systems such as the fuel and lubricating oil system.

By installing SOLAS solutions on turbochargers, exhaust gas pipes and fuel and oil spray/splash protection, engine room surface temperatures can be kept below 220 degrees Celsius, in line with SOLAS regulations.

"A fire in the engine room typically originates in a failure in the fuel and lubricating oil system, which is then followed by impingement of oil onto a high temperature surface," explains Salo.

Wärtsilä's SOLAS solutions keep the fuel and the heat away from each other, as the hot surfaces are lined.

Why now?

The SOLAS convention has been in force for over ten years, and awareness of engine room safety is now at an all-time high. The trend has also materialised in the order book for Wärtsilä's SOLAS solutions. It's partly due to the fact that the average installation base is reaching the age when safety upgrades are being considered. But a big driver is the overall raised level of safety awareness (we all ride a bike with a helmet these days, right?). It has stirred up the shipping industry as well, with owners and operators getting on trend. News

of near-misses and engine room fires spread like digital wildfire in these times of social media, too.

New ships are built to be SOLAS-compliant. A fire down in the engine room tends to have a paralyzing effect on the whole vessel. This is the reason why dual engine rooms are becoming increasingly common on modern ships – should a fire occur in one of the engine rooms, the other one is still operable.

(Retrieved: 11 June, 2015 from www.wartsila.com)

True or False?

- The sailor's profession was not as safe in the past as it is now.
- Nowadays, the most serious safety risk is flooding in the engine room.
- The temperature of some unprotected engine components and engine room surfaces can be higher than 600 degrees Celsius.
- The convention which aims to keep merchant ships safe is the MARPOL.
- The whole shipping industry cannot realise the importance of engine room safety concerning fire.
- A fire in the engine room can dramatically affect the operation of the whole vessel.

Answer the questions

- 1. What does the great number of shipwrecks testify?
- 2. What are some of the requirements of the SOLAS convention?
- 3. How can engine room surface temperatures be kept below 220 degrees Celsius?
- 4. As per Jyrki Salo, how can a fire in the engine room start?
- 5. Why are modern ships built with dual engine rooms?

GOOD LUCK!