A Reliable Main Engine Regular performance evaluations enable many problems to be detected and solved before they become critical. - The indicated pressure (p_i) and the engine speed (rpm) can be used to calculate the actual load and to find out if the propeller is 'heavy'. - The indicated pressure (p_i), the maximum pressure (p_{max}), the compression pressure (p_{comp}) and the exhaust temperature level can be used to judge the individual cylinder condition. - The fuel pump index, together with the actual engine load, can be used - to judge the condition of the fuel pump plungers/ barrels and suction valves. - The turbine back pressure and the pressure drop across the air cooler(s) and turbocharger intake filter(s) reveal if measures should be taken in regard to the air/gas ways. - The scavenge air pressure (p_{scav}), the compression pressure (p_{comp}), the turbocharger rpm, and the temperature before and after the turbine enable the condition of the turbocharger to be judged. The above are just a few examples of problems that can be detected and corrected before they become critical. However, it is important to take *all* measurements into consideration if a reliable evaluation of the engine performance is to be made. Further information on performance evaluation is available in the instruction book on board. *Please refer to Volume 1, Operation.* The diagram below illustrates the most common operational problems and their causes. However, it is important to be aware that if low-standard, non-original spare parts are installed, the information in the diagram cannot be relied upon. | | Causes | | | | | | | |-----------------------|--|--------------------|-----------------------|--|---|---|--| | Check
points | Worn fuel
pumps+
suction
valves | Heavy
propeller | Low T/C
efficiency | Exhaust
valves,
damaged
seats | Piston
rings
broken or
collapsed | Increased
press. drop
across air
cooler/filter | Increased
back-pres-
sure after
turbo-
charger | | Fuel pump
index | × | × | | — | — | | | | Exhaust temperature | × | × | × | × | × | × | × | | p _i | | × | | | | | _ | | p _{comp} | | | ¥ | ¥ | ¥ | ¥ | ¥ | | p _{max} | \sqrt | | × | \ | 1 | | _ | | p _{scav} | — | | × | | | × | ¥ | | Engine
rpm | _ | × | | | | | | | Overhauling intervals | × | × | * | N | × | × | * | | | Mechanical conditions | | | | | Restriction in air/gas ways | | | Mea | asurements on engine | Units | |-----|---|-------------| | 1 | p _i , p _{max} and p _{comp} | bar | | 2 | Fuel pump index and p _{max} adjustment index | mm | | 3 | Exhaust temperature | C° | | 4 | Exhaust temperature before and after turbocharger(s) | C° | | 5 | Turbine back pressure | mmHg | | 6 | Exhaust gas receiver pressure | mmHg or bar | | 7 | Turbocharger inlet temperature at inlet filter | C° | | 8 | Pressure drop across inlet filter | mmHg | | 9 | Pressure drop across air cooler | mmHg | | 10 | Air cooler water inlet and outlet temperature | C° | | 11 | Scavenge air pressure (p _{scav}) | mmHg or bar | | 12 | Scavenge air temperature | C° | | 13 | Scavenge air temperature before air cooler | C° | | 14 | Scavenge air temperature after air cooler | C° | | 15 | Fresh cooling water outlet temperature from main engine | C° | | Measurements in engine room | Units | |--|----------| | Turbocharger and engine revolutions | rpm | | Fuel oil pressure before and after filter | bar | | Fuel oil temperature before engine | C° | | Fresh cooling water inlet temperature, main engine | C° | | Barometric pressure | millibar |