

Four-stroke Small bore GenSet

Service Experience

Small bore HFO gensets HFO 700 cSt @ 50°C

16/24
21/31
27/38

Service Experience

Genset operation task force

Onboard performance and installation checks carried out on 29 ships with L16/24 engines showing below-average performance.

The four most common issues

- High exhaust gas temperatures
- Low TBO on fuel nozzles
- Sticking exhaust gas valves
- Low lifetimes on TC nozzle ring

Most Effective Countermeasures

Fuel

Installation of 25 µm safety filter and 10 µm backflushing filter

Separator adjusted to min. 98°C and flow reduced

Lube oil

Separator temperature adjusted to 95-98°C

Flow reduced to 500-300 l/hr.

Turbocharger

Daily dry cleaning and weekly wet cleaning of TC - DDWW

Results

Increased lifetimes on fuel nozzles – 12,000+ hrs.

Increased lifetimes on TC nozzle rings – 16,000+ hrs.

2. Correct Atomization

Essential for Combustion

Damage due to cat fines

Combustion depends on molecular contact

2. Fuel Nozzle Treatment Warning

Fuel Oil Optimised separator flow and ST cleaning flow

Fuel Oil Separator - Optimized flow

Flow according to actual trade (slow steaming)

MAN Diesel & Turbo

Lube Oil Contamination Measurements Field test results

Turbocharger Cleaning Size matters

Engine Type	Nozzle Ring Area mm²	Fouling mm	Reduction mm ²	Area reduction %	
5L16/24	125	1.0	40.7	32.6 ←	Size Matters!
9L27/38	625	1.0	96.0	15.4 🖌	

Exhaust Temperature

Turbocharger fouling

Service

➔ Fouling turbine (coke deposit). → Lower turbocharger performance. letter coming!

→ Lower air-flow/-pressure through the engine

➔ Increasing exhaust gas temperatures.

Daily: Dry cleaning Weekly: Wet cleaning Improved Texh: 30°C

Service Experience M/V Warnow Mars

2,000 running hours No cleaning of TC, neither by water nor by dry means

Worn out

6,000+ running hours Daily dry cleaning, weekly water washing Surface-coated nozzle ring **Good fuel treatment**

Expected lifetime – 16,000+ hrs.

Cylinder Condition Overview

Good cylinder condition on 4-stroke engines is normal

Watch out for...

Water carry-over - condensate
 Cat-fines - coming in by HFO

Avoid Burned Valves

Reasons...

The Evil Circle...

Recent Results

Changes introduced:
25 µm fuel safety filter installed,
6/10 µm backflushing in Genset branch pipe
Lube oil purifier: 85°C->95°C. 1000->500 l/hr. Running engine
Turbocharger: water washing added to dry cleaning (DDWW)

Recently obtained results:

Fuel nozzles:

TBO-Initially (owner): Now - and continuing:

Fuel filters

25/10 μm safety filter
25/10 μm safety filter
10-14 days after cleaning tanks
10/6 μm Auto-Backflush 5 month and happy crew ^(C)

400 hrs.

12.000 hrs.

Lube oil:

Exhaust Temperature	Stable!	4
Inspection @ 6000 hrs:	Very clean & low wear	
T/C, NR12/S, (DDWW)		
Replacement freq.	500 hrs → 2500 hrs.	
Spin filter	Within limits 10 mm Sludge/150 hrs	
Soot content:	Within limits	

< 26 >

L16/24 - 2015

Data		Mean Effective Pressure		
Bore	160 mm	5 cyl. engine	22.4 / 20.7 bar	
Stroke	240 mm	6, 7, 8, 9 cyl. engines	23.6 / 22.8 bar	
No. of cyl.	5-6-7-8-9	Mean piston speed	8 / 9.6 m/s	
Speed	1000 / 1200 rpm	Combustion pressure	170 bar	
Output / cyl.	90 / 110 kW	HFO	700 cSt	

General news:

- On-Engine fitted fuel safety filter 25/10
- External automatic fuel filter 10/6
- TC cleaning optimised DDWW
- Important service instructions as 'short/easy'-reader
- Technical training for ship crew
 - Officers conference Holeby-hands on

16,000 hrs. Engine TBO8,000 hrs. Fuel valves TBO3-year design warranty

L16/24 – Release January 2016

Applications:

- Part load optimised
- 3-point installation

New cylinder unit:

- Valve, exhaust DuraSpindle or Top Premium (Nimonic81 + Crystal coat)
- New piston ring pack

Turbocharger:

TCR10 (5L)

Others:

Heat insulation on top FEB

Project P25 Target 25,000 hours TBO

25,000 hrs. target – world class performer

Thank You for Your Attention!

All data provided in this document is non-binding. This data serves informational purposes only and is especially not guaranteed in any way. Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.