MERCHANT MARINE ACADEMY OF MACEDONIA SCHOOL OF ENGINEERS

Name:

Course: Maritime English Academic year: 2018 – 2019

Exam period: September 2019 Student number: Semester: E' (Retakes-Old students) Date: 12/09/2019

Instructor: A. Birbili Exam paper grade:

FINAL EXAM

1. Fill in the gaps using the words below. (15 p.)

Azipods propeller	governor	oil confo	ormity o	addition	thrust	straight
regulations bearing	s load p	roperties	тапоеі	uvrability	unburn	t speed
As the	is used	l to lubricat	te the eng	ine, its		deteriorate
over a period of time of	lue to the		of in	mpurities v	which cou	ald include
fue						
Once the	of t	he engine h	as been s	et, the role	of the _	
is to maintain that spe	ed despite the	e variations	in		_ .	
	are used to su	pport the sl	hafting in	a		line between
the main engine and th	ne					
A marine diesel eng			l in		with	the various
international rules and		as v	vell as the	advice of	the man	ufacturer.
	are the most a	advanced o	ption whe	en		is really
valuable to the vessel	since these s	ystems can	turn 360	degrees ar	nd	can
be directed at any dire				-		

2. Choose the correct alternative of the words in italics. (15 p.)

It is a bit difficult to read the early signs of a crankcase explosion. This is because the indications are *similar / different* to many other emergency situations. But there are few pre-explosion signs that can be read. Crankcase explosion will lead to:

- Sudden increase in the *inlet / exhaust* temperature
- Sudden *increase* / *decrease* in the load of the engine
- Regular / irregular running of the engine
- Incongruous noise of the engine
- Smell of the white mist.

In case of these indications, engine *load / speed* should be brought down immediately and the supply of fuel and air should be stopped. The system should then be allowed to cool down by *opening / closing* the indicator cocks and turning on the internal cooling system.

Crankcase explosions can be prevented by avoiding the generation of hot spots. They can also be prevented in the following ways:

- By providing proper lubrication to the reciprocating parts, thus avoiding high *temperatures / pressures*.
- By avoiding overloading of the engine
- By using bearings with *black / white* metal material which prevents rise in temperature.
- By using oil mist detector in the crankcase with proper *vision / visual* and audible alarm. Oil mist detectors raise an alarm if the *concentration / condensation* of oil mist rises above the permissible limit.
- Pressure *regulating / relief* valves should be fixed on the crankcase for the instant release of pressure. They should be periodically *temperature / pressure* tested.
- Crankcase doors should be made of strong and durable material. Vent *pipes / ports* shouldn't be too large and should be checked for any choke up.
- In the event of an explosion, the crankcase doors should never be opened until the system has totally *calmed / cooled* down.
- Fire extinguishing medium should be kept standby. In many systems, *exhaust / inert* gas flooding system is directly connected to the crankcase.

3. Fill in the gaps using the words below. (15 p.)

cavitati	ion	drain	runnii	ng det	ector	flame	es j	princiį	ole	vent	solution
blade	explo	osion	fresh	crankc	ase	relief	wai	rning	pre	ssure	
In fre	eezing	weath	er, you n	nust care	efully				all p	assage	es and pockets in
the eng	ine th	at conta	ain			water a	and a	re subj	ect to	freez	ing, unless an
antifree	eze			has been	n adde	ed to the	e wat	er.			
			_ is the f	ormatio	n and	bursting	g of v	apour	bubb	oles in	water near a
moving	g prope	eller			in re	gions of	flow	pressu	ıre du	ie to B	ernoulli's
The o	oil mis	 st		do	es no	t reduce	e or p	revent	the f	ormati	ion of mist, but it
only gi	ves			_ in case	e the c	concenti	ratior	n rises	abov	e the le	evel at which an
		can	take pla	ace.							
Whe	n engi	nes are	stopped	l, you m	ust			al	l star	ting-ai	r lines because
serious	accid	ents ma	ay occur	if			is le	ft on.			
Press	sure			valve	s shou	ıld be pı	rovid	ed wit	h wir	e mesl	n to prevent the
release	of			_ inside	the en	igine ro	om.				
Oil n	nist is	created	l in the _			wh	en th	e lubri	icatin	g oil is	s splashed by the
		(compone	ents of th	ie eng	ine.					
4 Com	nloto	tha sai	ntancas	with the	annr	·onrieta	for	n of th	10 W	rde in	parentheses. (20
p.)	трисис	the ser	itelices	WILLI LIIC	appi	ортан	. 1011	ոսւս	ic wo	i us iii	parentneses. (20
P•)											
The i	main s	haft is	supporte	ed and h	eld in				(alig	n) by	bearings.
											e) takes place.
											bunkering.
			ches the								
			absolut								
										mit) of	f ships' fuels.
											hecked on a regula
basis.			(

The screw-type propeller is the	(propel) device used in almost all
ships.	
In (control) pitch prop	pellers, the pitch can be adjusted by a hydraulic
mechanism which allows the blades to turn	on their own axis.
Depending on the (lor	g) of the shaft, there can be two or more shafts
coupled by bolting (arra	
	disperse) to break up the oil spill in the Gulf of
Mexico some years ago.	
The lubricating oil used in	(corrode) conditions such as lubrication of
cylinder liners is mixed with certain	
Cavitation can waste power, generate	
(vibrate) and wear, and	
(regular) running of t	
(indicate) of the governor's	•
Materials which offer low	
conductors.	
5. Match the words to their synonyms/de	finitions. There is one extra word. (15 p.)
1	1.6 - 1.11
condense dependable attempt mome	ntum stationary defect build up
choke disperse ductwork impact a	urable chock range rupture limited
standing still; not moving	
clog	
-	
accumulatefault	
able to last, long-lasting	
effort	
effortvary between limits	
cause to break or burst	
(of a gas) become liquid, esp by becoming of	
restricted the quantity of movement in a body	
the total of all pipes or tubes	
reliablescatter or spread in different directions	
<u>=</u>	
having a powerful influence on sth/smb	
6. Write the opposites of the following wo	rds. (10 p.)
ingress	equality
efficient	obey
manned	balance
reasonable	formation
	reduce
equal	reduce

7. Read the following article and answer the questions that follow. (10 p.)

You think crankcase explosions don't happen much anymore! Think again!

At 6 a.m. on November 8, 2010, the second day of a voyage from Long Beach, CA to the Mexican Riviera, the 952-foot cruise ship Carnival Splendor experienced a fire in her engine room, knocking out all electrical power on the ship. Carnival reported shortly after the incident that a "crankcase split" had caused the fire, apparently the result of a crankcase explosion in one of the diesel engines.

The fire was extinguished by that afternoon and luckily none of the nearly 4,500 passengers and crew members on board at the time was injured. The crew could not restore power to any of the engines and the ship had to be towed to San Diego over the next three days. Because of the power outage, the ship lacked food service, so passengers were fed rations delivered by U.S. Navy helicopters from the aircraft carrier USS Ronald Reagan. Carnival Splendor arrived in San Diego under tow around sunrise on November 11.

The Panamanian-flagged vessel was built by Fincantieri and entered service in 2008. Since the incident was in international waters, the flag state, Panama, initially led the casualty probe, with the U.S. Coast Guard assisting. Subsequently, for unknown reasons, the Panama Maritime Authority asked the U.S. to take over the investigation. The National Transportation Safety Board (NTSB) assigned staff to conduct the investigation, while Carnival's own engineers and representatives from both the shipyard and the engine manufacturer also investigated the incident. No definitive conclusions have yet been provided, although the focus remains on one of the diesel generators. Initial findings revealed that diesel engine number five in the aft engine room suffered a split of the crankcase and caught fire, damaging the engine control room and the electric cabling.

Carnival estimated that the cost of repairs, transport, refunds, free cruises given to displaced passengers, and the lost revenue from cancelled sailings would total \$65 million.

In a time when modern automation systems are supposed to prevent the above types of incidents from happening, these events are not rare. According to an eleven-year analysis of its classed fleet starting from 1990, Lloyds Register recorded 143 incidents of crankcase explosions, caused by bearing failures, piston failures, and other types of failures. (Retrieved: 02 September, 2017 from macsea.com)

- 1. What was the cause of the fire and what damage did it cause?
- 2. How many casualties were there?
- 3. How long did it take the cruise ship to arrive in San Diego? And how did she arrive there?
- 4. Who conducted the investigation in the first place and why?
- 5. As per Lloyds Register, what are the main causes of such incidents?

GOOD LUCK!